文墨小说

手机浏览器扫描二维码访问

Chapter 1 How notto thinkabout numbers(第1页)

Chapter1Hownottothinkaboutnumbers

banner"

>

Weareallusedtoseeiendown,andtsomemeaningfromthem.However,anumeralsudtherepreseohing.InRomannumerals,forexample,ritethenumbersixasVI,butwerealizethatthisstandsforthesameiswrittenas6iion.Bothsymbolizesofthekinddingtosixtallymarks:IIIIII.Weshallfirstspendalittletimegthedifferentresentandthinkaboutnumbers.

&imessolvenumberproblemsalmostwithit.Forexample,supposeyouaregameetingandyouwahateveryoherehasacopyoftheagenda.Youdealwiththisbylabellingeachcopyofthehandoutinturialsofeachofthosepresent.Aslongasyoudonotrunoutofcopiesbeforepletingthisprocess,youwillknowthatyouhaveasuffiumbertogoaround.Youhavethehisproblemwithtoarithmetidwithoutexpliting.Thereareworkforushereallthesameandtheyallowpreparisoionwithahoughthemembersthatmakeupthescouldhaveentirelydifferentcharacters,asisthecasehere,whereoisaofpeople,whiletheothersistsofpiecesofpaper.

Whatnumbersallowustodoistoparetherelativesizeofohanother.

Intheprevioussarioyouhertoanypeoplewerepresentasyoudidoknowyourproblemwastodetermithenumberofcopiesoftheagendawasatleastasgreatasthenumberofpeople,andthevalueofthesenumberswasnotrequired.Youwill,however,akeaberpresentwhenyouorderlunchforfifteeaiestotottingupthebillforthatmeal,someonewillmakeuseofarithmetictoworkouttheexactifthesumsarealldoneonacalculator.

Ourmoderemallowsustoexpressnumbersianduniformmanner,whichmakesiteasytoberwithaoperformthearithmeticaloperationsthatarisethroughg.Io-dayworld,weemploybasetenforallourarithmetic,thatistosaywetbytefortheatalreasoendigitsonourhands.Whatmakesouremsoeffective,however,isnotourparticularchoiceofbasebutrathertheuseofpositionalvalueiniohevalueofanumeraldependsonitsplathering.Forexample,1984isshortfor4onesplus8lotsoftenplus9hundredsplus1thousand.

Itisimportaandheenumbersinparticularways.Inthischapter,wewillthinkaboutwhat,discoverdifferentapproaeetaveryimportaofheprimes),andintroduplericksfthem.

Howgwassortedout

Itiswafewmomentstoappreciatethattherearetwodistiheprocessofbuildingagsystembasedon,foriwobasictasksthatweimposeonarerememberinghowtorecitethealphabetandlearninghowtot.Theseprocessesaresuperficiallysimilarbutyethavefualdifferences.eisbasedoeralphabetand,roughlyspeakierdstoasouospeakwords.IislytruethattheEnglishlanguagehasdevelopedsothatitbewrittenusiof26symbols.However,ilediariesunlessweassigoouralphabet.Thereisnopartiaturalorderavailableawehavesettledonandallsinginschool,a,b,c,d,...seemsveryarbitraryiobesure,themorefrequeersgenerallyothefirsthalfofthealphabet,butthisisuideratherthaheoerssandt,forexample,soundingofflateintherollcall.Bytrast,theumbers,ornaturalheyarecalled,1,2,3,...etousinthatorder:forexample,thesymbol3ismeanttostahatfollows2andsohastobelistedasitssuccessor.toapoint,makeupafreshnameforeachsuumber.Sooer,however,wehavetogiveupandstartgroupiordertohaheunendingsequence.Groupingbytehefirststageofdevelopingasouem,andthisapproachhasbeenhroughouthistoryandacrosstheglobe.

Therewas,however,muchvariatioheRomansystemfavatheringbyfivesasmus,withspecialsymbols,VandL,forfiveandforfiftyrespectively.TheAemwassquarelybasedbytens.Theywouldusespecificletterstostandforimesdashedtotellthereaderthatthesymbolshouldbereadasaherthaerinsomeordinaryword.Forexample,πstoodfor80andγfor3,sotheymightwriteπγtodehismaylookequallyaseffidihesameasournotation,butitisnot.TheGreeksstillmissedthepoiiohevalueofeachoftheirsymbolswasfixed.Inparticular,γπcouldstillohesamenumber,3+80,whereasifweswitchtheorderofthedigitsihedifferentnumber38.

IntheHindu-Arabicsystem,thesedstageofionwasattaihebigideaistomakethevalueofasymboldepeupoothestring.Thisallowsustoexpressahjustafixedfamilyofsymbols.Wehavesettledoennumerals0,1,2,…,9,sothenormalemisdescribedasbaseten,butwecouldbuildouremupfrerorasmallerofbasicsymbols.Wemahasfewastwonumerals,0and1say,whichiswhatisknownasthebinarysystem,sooftenusedinputing.Itisnotthechoiceofbasesize,however,thatwasrevolutionarybuttheideaofusingpositiorainformationabouttheidentityofyournumbers.

Forexample,riteanumberlike1905,thevalueofeachdigitdependsonitsplatherihereare5units,9lotsofonehundred(whichis10×10),aofohousand(whichis10×10×10).Theuseofthezerosymbolisimportantasaplaceholder.Inthecaseof1905,notributiohe10’splace,butweorethatandjustwrite195ihatrepreseirelydifferentnumber.Iringofdigitsrepresentsadiffereisforthatreasonthathugenumbersmayberepresentedbyshs.Forinstanassigoeveryhumanbeihusingstringsendigitsandinthisersooeveryindividualbelongingtothishugeset.

&hepastsometimesuseddiffereheirwritingofhatismuchlesssignifithefaearlyallofthemlackedatruepositiohfulluseofazerosymbolasaplaceholder.InviewofhowveryahecivilizationofBabylon,itisremarkablethattheyamongthepeoplesoftheaworldcameclosesttoapositionalsystem.

&,however,fullyembracetheuseofthenot-so-naturalnumber0aheemptyregisterinthefinalpositionthewaywedotodistinguish,forexample,830from83.

&ualhurdlethathadtobeclearedwastherealizationthatzerowasindeedaedly,zeroisnotapositiveisahesameanduntilweiooureminafullytmanner,weremainhahisalstepwastakeninIndiainaboutthe6thturyAD.Ouremisdu-ArabicasitwasuniIndiatoEuropeviaArabia.

Livingwithandwithoutdecimals

Adoptingaparticularbaseforaemisalittlelikeplagaparticulargridsap.Itisnotintrinsictotheobjectbutisratherakintoasystemofatesimposedontopasaoftrol.Ourchoiceofbaseisarbitraryiheexclusiveuseofbasetensaddlesusallwithablihesetofumbers:1,2,3,4,….Onlybyliftingtheveilweseeofaceforwhattheytrulyare.Wheionapartiumber,letussayforexampleforty-nine,allofushaveamentalpictureofthetwonumerals49.Thisissomewhatunfairtothenumberiionasweareimmediatelytypegforty-nineas(4×10)+9.Since49=(4×12)+1,itmayjustaseasilybethoughtofthatwayand,indeed,iy-hereforebewrittenas41,withthenumeral4nowstandingfor4lotsof12.Hivesthey-scharacteristhatitequalstheproduownasthesquareof7.Thisfacetofitspersonalityishighlightedihenthey-edas100,the1nowstandiof7×7.

Wewouldbeequallyeouseanotherbase,suchastwelve,forourem:theMayayandtheBabyloy.Ihenumber60isagoodchoiceforagbaseas60hasmanydivisthesmallestnumberdivisiblebyallthenumbersfrhto6.Arelativelylargenumbersuchas60hasthedisadvatouseitasabasewouldrequireustointroduce60separatesymbolstostahenumbersfromzerouptofifty-nine.

Onenumberisafaotherifthefirstnumberdividesintotheseberoftimes.Forexample,6isafactorof42=6×7but8isnotafactorof28as8iimeswitharemaihepropertyofhavingmanyfactorsisahaohaveforthebaseofyourem,elvemayhavebeeerchoitenforournumberbaseas12has1,2,3,4,6,and12asitslistoffactorswhile10isdivisibleonlyby1,2,5,and10.

&ivenessandsheerfamiliarityofouremembuesuswithafalsedwithsomeinhibitions.ierwithasihanwithaicalexpression.Forexample,mostpeoplewouldrathertalkabout5969than47×127,althoughthetwoexpressiohesamething.outtheanswer’,5969,dowefeelthatwe‘have’thenumberandlookitihereis,however,aofdelusioninthisaswehaveohenumberasasumofpowersoften.Thegeneralshapeoftheherpropertiesferredmorefromthealternativeformwherethenumberisbrokendoroductoffactors.Tobesure,thisstandardform,5969,doesallowdireparisonwithotherareexpressediitdoeshefullhenumber.InChapter4,youwillseeonereasoorizedformofanumberbemuchmorepreitsbaseteion,vitalfactorshidden.

&agethattheasdidhaveoverusisthattheywererappedwithiylemiberpatterns,itwasnaturalforthemtothinkintermsofspeetricpropertiesthatapartiumbermayormaynotenjoy.Forexample,numberssuchas10ariangular,somethingthatisvisibleththetriangleofpinsinten-pinbowliriangularrackoffiteenredballsihisishatindfromthebasetendisplaysofthesenumbersalohefreedomtheasenjoyedbydefaultturebygasideourbasetenprejudidtelliwearefreetothinkofnumbersinquitedifferent>

Haviedourselvesinthisway,wemightchoosetofofactorizationsofaistosaythewaythenumberberodualleripliedtogether.Factorizatiohingofthenumber’siure.Ifwesuspeofthinkingofnumberssimplyasservantsofsderdtakealittletimetostudythemintheirhtwithoutreferehingelse,muchisrevealedthatotherwisewouldremaihenaturesofindividualnumbersifestthemselvesiernsinnature,moresubtletharianglesahespiralheadofasunflower,whichrepresentsaso-calledFibonaumber,ahatwillbeintroduChapter5.

Aglaheprimenumbersequence

&hegloriesofnumbersissoself-evidentthatitmayeasilybeoverlooked–everyohemisunique.Eaumberhasitsownstructure,itsowncharacterifyoulike,ayofindividualnumbersisimportantbeapartiumberarises,itsnaturehascesforthestructureofthetowhiumberapplies.Therearealsorelatioweerevealthemselveswhenwecarryoutthefualionsofadditionandmultipli.yumbergreaterthan1beexpressedasthesumofsmallernumbers.Hoestartmultiplyiher,wesooherearesomeurnupastheaooursums.Theseheprimesahebuildingbloultipli.

Aprimenumberisanumberlike7or23or103,whichhasexactlytwofactors,thosenecessarilybeing1andtheself.(Theworddivisorisalsousedasaivewordforfactor.)Wedonott1asaprimeasithasoor.Thefirstprimethenis2,whichistheonlyevehefollowingtrioofoddnumbers3,5,and7areallprime.erthan1thatarenotprimearepositeastheyareallerhenumber4=2×2=22isthefirstber;9isthefirstoddber,and9=32isalsoasquare.Withthenumber6=2×3,wehavethefirsttrulyberinthatitisposedoftwodifferentfactorsthataregreaterthan1butsmallerthantheself,while8=23isthefirstpropercube,whichisthewordthatmeansthatthenumberisequaltosomenumberraisedtothepower3.

&hesinumbers,wehaveourberbase10=2×5,whichisspeethelessbeingtriangularinthat10=1+2+3+4(rememberten-pinbowlihenhaveapairoftwinprimesin11and13,whicharetwosebersthatarebothprime,separatedbythenumber12,whitrasthasmanyfactorsforitssize.Ihefirstso-calledabundahethesumofitsproperfactors,thoselessthantheself,exceedsthenumberiion:1+2+3+4+6=16.Thenumber14=2×7maylookundisti,astheparadoxicalquipgoes,beiundistinguishednumbermakesitdistierall.In15=3×5,wehaveariangularisthefirstoddistheproductoftwoproperfactors.Ofcourse,16=24isnotonlyasquarebutthefirstfourthpower(after1),makingitveryspedeed.Thepair17aherpairoftwinprimes,ahereadertomaketheirowionsaboutthepeatureofthenumbers18,20,andsoon.Foreaakeae.

热门小说推荐
每日热搜小说推荐