手机浏览器扫描二维码访问
Chapter8hem
banner"
>
Realandbers
Itistemptingthallthisfrettingaboutparticularequationsandsimplydeclarethatwealreadyknowwhattherealheyaretheofallpossibledecimalexpansions,bothpositiveaheseareveryfamiliar,inpractiowhowtousethem,andsowefeelonsafegrouilweasksomeverybasiaiureofhatyouadd,subtract,multiply,a,forexample,howareyousupposedtomultiplytwoinfinitendecimals?Wedependondecimalsbeihsothatyou‘startfrht-hathereisnosugwithaninfinitedecimalexpansion.Ite,butitisplicatedbothintheoryandinpraumbersystemwhereyletoexplainholydoesisfactory.
Youmayioionsraisedaboryoumaygrowimpatientwithalltheiioobemakingtroubleforourselveswhenpreviouslyallwassmoothsailing.Thereisaseriouspoihematisappreciatethat,whehematicalobjetroduced,itimportanttostructthemfromkicalobjects,theway,foriioofaspairsers.Inthisway,wemaycarefullybuilduptherulesthatgovereemandkafoundatiowillebatuslater.Forexample,therapiddevelopmentofcalculus,whichwasbornoutofthestudyofmotioospectacularresults,suchasprediovemes.Houlationofihingsasiftheywereimesprovidedamazinginsightsaimespatentingyourmathematicalsystemsonarmfoundation,wehowtotellthedifferenpractice,mathematisoftenindulgein‘formal’manipulatiooseeifsheoffieisworthyofattebeprorouslybygoingbacktobasidbyihathavebeeablishedearlier.
ThisiswhyJuliusDedekind(1831-1916)tookthetroubleofformallystrugtherealembasedoisoasDedekindcutsofthereallimathemati,however,tosuccessfullydealwiththedilemmacausedbytheexisteionalnumberswasEudoxusofidus(fl380BC)whoseTheoryofProportionsallowedArchimedestousetheso-calledMethodofExhaustiorouslyderiveresultsonareasandvolumesofcurvedshapesbeforetheadventofcale1,900yearslater.
Thefiheheimaginaryunit
13.Additionofbersbyaddiedlis
&iberspresentsitselfveryheplexplahinkofthebera+biasbeihepoint(a,b)intheateplawobersz=(a,b)andw=(c,d),wesimplyaddtheirfirstariestiveusz+w=(a+c,b+d).Ifwemakeuseofthesymboli,wehaveforexample(2+i)+(1+3i)=3+4i.
Thisdstowhatiskoradditionintheplaedliors)areaddedtogether,toptotail(seeFigure13).Webeginatthein,whichhasatesof(0,0),andinthisexamplewelaydownourfirstarrowfromtheretothepoint(2,1).Toaddtheedby(1,3),wegotothepoint(2,1),anddrawanarroresentsmoving1unitrightialdire(thatisthedireoftherealaxis),and3unitsupiioical(theimaginaryaxis).Weendupatthepointwithates(3,4).Inmuchthesameway,weesubtrabersbysubtragtherealandimaginarypartssothat,forexample,(11+7i)-(2+5i)=9+2i.Thisbepicturedasstartingwiththevector(11,7),andsubtragthevector(2,5),tofinishatthepoint(9,2).
Multipliisaer.Formallyitiseasytodo:wemultiplytwoberstogetherbymultiplyis,rememberingthati2=-1.AssumiributiveLawuestohold,whichisthealgebraicrulethatallowsustoexpasintheusualway,thenmultipliproceedsasfollows:
(a+bi)(c+di)=a(c+di)+bi(c+di)=
ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i
Byusiherthanspeberswethesameway,fieofageneraldivisionofbersiheirrealandimaginarypartsaswehavedoneabeneralultipli.Hastheteiqueisuhereisnoproduorizetheresultingformula.
14.Thepositionofaberinpolarates
Multiplihasageometriterpretationthatisrevealedifwealterouratesystemfromtheularatestopolarates.Inthissystem,apointzisonspecifiedbyanorderedpairofnumbers,riteas(r,θ).Thehedistanceofourpointzfrihistextthepole).Thereforerisaivequantityandallpointswiththesamevalueofrformacircleofradiusrtredatthepole.Weusethesedateθtospethiscirclebytakiheangle,measuredinananti-clockwisediretherealaxistothelihenumberriscalledthemodulus(pluralmoduli)ofz,whiletheangleθiscalledtheargumentofz.
Supposewobers,zandw,whosepolaratesare(r1,θ1)and(r2,θ2)respectively.Itturnsoutthatthepolaratesoftheirproductzwtakeonasimpleandpleasingform.Theruleofbinationbeexpressedlyine:themodulusoftheproductzwistheproduoduliofzandw,whiletheargumentofzwisthesumumentsofzandw.Insymbols,zolarates(r1r2,θ1+θ2).Themultiplioftherealnumbersissubsumeduhismeneralwayoflookingatthings:apositiverealnumberr,forinstance,haspolarates(r,0),aiplybyaheresultistheexpected(rs,totherealnumberrs.
Muchmoreofthecharaultipliplexnumbersisrevealedthroughthisrepresentation.Thepolaratesoftheplexunitiaregivenby(1,9lesarenreesinsuchthenaturalmathematiitoftheradian:thereare2πradiansiaturnofoneradiaomovialongthecirceoftheuredatthein.Oneradianisabout57.3°.)Ifwenolexnumberz=(r,θ)andmultiplybyi=(1,90°),wefindthatzi=(r,θ+90°).Thatistosay,multiplibyidstorotatiharightaheplexplaherwords,therightamostfualgeometricidea,berepresentedasanumber.
&heeffectofaddingormultiplyingbyaberzosinagiveheplexplauredgeometrically.Imagineanyregionyoufantheplaoeverypointinsideyion,wesimplymoveeatthesamedistanddireihearrow,orvectorasweoftencallit,represehatistosaywetraosomeotherpositionintheplatheshapeandsizeareexatained,asisitsattitude,bywhitheregionhasnoatioion.Multiplyiinyionbyz=(r,θ)hastwoeffects,however,onecausedbyraherbyθ.Themodulusofeatintheregionisincreasedbyafactorr,soallthedimensionsionareincreasedbyafactorofralso(soitsareaismultipliedbyafactorofr2).Ofcourse,ifr〈1thenthis‘expansioerdescribedasatraasthenewregionwillbesmallerthantheinal.Theregionwill,however,maintainitsshape-foririangleismappedontoasimilartriahesameanglesasbefore.Theeffectofθ,aslaiorotatetheregihaiclockwiseaboutthepole.Theheninmultiplyingallpointsionbyzistoexpandandrionaboutthepole.Thenewregionwillstillhavethesameshapeasbeforebutwillbeofadiffereerminedbyr,andwillbelyingiitudeasdetermiionangleθ.
Furtherces
Thereareahostofappliplexheelemeheiweeangularandpolarrepresentatiooplayinasurprisingandadvantageousway.Foriandardexerciseforstudeionofimportahaturallybytakingarbitrarybersofunitmodulus(i.e.r=1),andgpbularandthenpolarates.Equatiwoformsoftheaherigoion.
&hesameinpives:
&herealandimaginarypartsofthetwoversionsofthisothenpainlesslyyieldsthestandardanglesumformulasory:
&ively,thepolarformforultiplibederivedusirigoriulas.Ihatwehavestatedhere,withoutproof,formultiplipolarformisusuallyrstderivedfrularformbyusingtrigoriulas.